コンピュータシステムを作っちゃおう!

目的・ねらい

パソコンとは違う小さなシステムを自分で組み上げ る体験を通して、ハードウェアに対する理解を深める とともに、身の回りのシステムに興味をもって欲しい と考えています。プログラムをすべて理解させるので はなく、特に初心者に対しては数値を変えたら動きが 変わった、という体験をさせることに重点を置いてく ださい。上級者に対しては、自分でどんどん変えさせ て構いません。初心者には成功体験が、上級者にはト ライ&エラーが大事です。

実施内容の概要

Arduino(アルデュイーノ)という小さなコンピュー タを使って、音を鳴らす・音の高さを変える・サーボ モーターを回す・距離センサーを使う、といったこと を体験しながらプログラムの動作を理解し、パソコン とは違う小さなコンピュータの世界に触れます。

講師用の実施手順の詳細

準備することがら、物品など

- ●作業しやすいようにバナナジャック化された Arduino ボードと周辺機器を使います。
- ●使うコンピュータでは Arduino.exe とメモ帳をタス クバーに登録しておきます。Windows+1, Windows+2 などで起動させると無駄な時間をとり ません(Windows10の場合)。
- ArduinoはJava Accessibility SwitchがONになっていないと音声出力しないので、java¥binディレクトリにて「jabswitch -enable」を実行しておきます。
 (ただし違うJavaを読み込むようなPATHの設定だとうまくいかないことがあります。)スクリーンリーダーにはNVDAを用います。
- メモ帳やエディタでの編集には、使い慣れたスクリ ーンリーダーを使わせる方がよいかもしれません。
 その際は、Arduinoの音声出力をあきらめてショー
 トカットだけの操作をする、もしくはそこの操作は
 補助者がやってしまう、という選択肢もあります。
 いずれにせよプログラムを音声で確認する場合に、

中カッコなどの記号をきちんと読むように調整し ておくことが大事です。

- ツールメニュー以下のシリアルポートやボードの
 種類を設定しておきます。
- サンプルプログラムをドキュメントフォルダ> Arduino フォルダ内においておきます。Alt メニュ ーのファイル→スケッチから開かせます。動作確認 もしておきます。最初に接続した際に音が鳴らない よう、空のスケッチを最後に入れておきます。

実施手順の詳細

導入部分

概要を説明し、以下の用語説明をします。

- ●「Arduino」とは今日使う小さなコンピュータであ る。
- ●「スケッチ」とは Arduino を動かすプログラムであ る。
- ●スケッチ(プログラム)を作るためのプログラム=
 ソフトウェアがある。
- ●そのソフトウェアの名前も Arduino(.exe)である。
- ●アナログは連続する(=つながっている)量、温度

や角度など実世界に存在する量

デジタルはバラバラの量、コンピュータに入るとデジタル化される。

そして、Arduino はパソコンがなくても「コンピュ ータとして」単体で動くことも説明しておきます。

ARDUINOの概要説明

Arduinoボードの右上の触覚手掛かりシールなどを 使い、同じ方向を向かせてから触らせます。触らせな がら、以下を確認させ、説明します。

- USB コネクターの位置
- USB ケーブルを通してスケッチが Arduino に書き 込まれること。
- ●バナナジャックの位置と数、そして実際にはそれら がケーブルを通して Arduino のコネクターに接続 されていること。
- ●静電気破壊の恐れがなければ CPU のチップや水晶 発振器などを説明する。

●アナログ入力をする端子やデジタルの入出力をする端子があること。

視覚障害者向けに バナナジャックを装備した Aruduino ボード

これらの触察の際はケガをしないように、またハード ウェアを壊してしまわないようにゆっくり触るよう 指導します。触らせる方向を統一しておかないと説明 に苦労するので、向きを変えないように伝えておきま す。

アナログ入力については「電圧の高さを検出する」 という程度の説明をします。デジタルの方は5Vか0V かを判断したり出力したりするという説明をします。 (高学年の場合には、5Vといっても「だいたい5V くらい」という話を盛り込むのも良いかもしれませ ん。) ARDUINO.EXE の起動と使い方の説明

コンピュータを起動し、Windows+1 で Arduino.exe を、必要であれば Windows+2 でメモ帳やエディタを 起動します。メモ帳やエディタを使う場合は Alt+Tab でのアプリケーション切り替えができることを確認 してください。プログラムの編集は Arduino.exe がう まく読む場合には、そのまま使うことも可能ですが、 音声化がうまくいかなかったり、編集に困難があった りするような場合はメモ帳などを使わせてください。 Ctrl+A, Ctrl+C, Alt+Tab, Ctrl+A, Ctrl+V、の一連の シーケンスでコピー&ペーストすることなどを説明 し、操作について確認します。作業に慣れている生徒 なら問題ないのですが、作業の速度差が出てしまう場 合があります。適宜補助して、プログラムの内容を読 ませ理解させることに時間を使うように流れをコン トロールしてください。

Aruduino.exe を起動した様子

スケッチを Arduino ヘアップロードするショート カットキーは Ctrl+U であることをここで説明します。 適宜自由にメニューを読ませてショートカットキー を確認させても良いです。アップロードの際には確実 に Arduino がケーブルで接続されていることを確認 するよう指導してください。画面が見える生徒に対し ては、ボタンアイコンの説明もしてください。コンパ イルは Ctrl+R ですが、かえって混乱させてしまうよ うなら、あえてワークショップでは説明しなくても良 いかと思います。デバッグペインへは、F6 で移動で きます。F8 での移動をするバージョンもありました が、現状では F8 は境目のバーへのフォーカスの移動 のようです。

もしプログラムに詳しい生徒の場合には、setup() と loop()の2つのセクションがあり、setup()は最初 の一回、loop()は無限繰り返しであることなども説明 すると良いでしょう。

本家のリファレンスは以下になります。

https://www.arduino.cc/en/Guide/HomePage

圧電スピーカーでメロディ作成

最初に圧電スピーカーを使って音楽を鳴らすサン プルを試します。好みのメロディを構築させて興味を もってもらうのが目的です。具体的には以下の手順で 進めます。

 ●まずファイル→スケッチブックから最初のサンプ ルスケッチを開かせます。そのまま読むのが困難な 場合はメモ帳にプログラムをコピーさせます

(Ctrl+a, Ctrl+c, Alt+Tab, Ctrl+v など)。生徒が分 かっている場合には、直接 INO ファイルを編集さ せるのも良いかもしれません。最初なので適宜手助 けして、生徒間のペースを整えます。

- ●ファイルを開いた後に NVDA でも読ませつつプロ グラムの内容を順に説明します。
- ▶スラッシュが2つ続いた後はコメントでプログラム には影響しない説明文であることを伝えます。この 説明文をコメントと呼ぶことや「コメントアウト」 という言葉などを教えるのも良いでしょう。
- ▶定数名が数値を意味することを理解しているか確認しつつ進めます。プログラムの基本としての「定数」「変数」の話がしたくなるところですが、難しいことは言わずに「文字が数字の値を意味する」のような説明にとどめておきます。変数は次のサンプルで出てきます。
- ▶ tone()は音を鳴らす命令で、その後に delay()という 命令が必要なことを教えます。適宜英語の意味など も説明に入れると良いでしょう。生徒の様子を見て 難しく感じてしまいそうならば、これらの命令で1 つの音を鳴らす、といった程度の説明でも構いませ ん。これらの編集を後ほどしてもらうことも伝えま す。
- ●Arduino のボードに圧電スピーカーを接続させます。

赤をデジタル 10 番に、黒を GND に接続させます。 ここは「自分で挿す」ことに重点を置いてください。 ただし、乱暴に扱って壊してしまわないよう、ゆっ くり触るよう、分からないことがあったら聞くよう 指導してください。「高価なものである」と最初に 伝えておくことも重要です。

- ●接続が終わったら、Ctrl+U を押させ、サンプルス ケッチをコンパイル&アップロードします。
- モバイルバッテリーなどがあれば、コンピュータから外して単体で実行してみます。単純なオルゴール的なものですが、プログラムが転送されて中で動いていることを実感してもらいます。
- ●サンプルプログラムが動いたら、音階を自由に組み 合わせて自由にメロディを作ってもらいます。ここ で比較的多くの時間を割いて、成功体験をしてもら います。この作業は最後に持ってくる構成も良いと 思います。
- ●音楽の才能のある生徒さんには、何か課題曲を与えても良いでしょう。
- ●進度の早い生徒さんや音楽の素養のある生徒さん には音の長さも変えさせます。delayの値を調整し

て「間」を作ることも試してもらいます。

スピーカーの接続の際には、「USB コネクターを上 に向けて置いて、右側の一番上のバナナジャックがデ ジタルの 10 番ピンです」「その下が GND です」と いった声掛けで説明します。

プログラムの説明時、tone()メソッドは3つの引数 を持つことを生徒に合った言葉で説明します。「カッ コの中に3種類の値をカンマで区切って書く」「1番 目の値はピン番号、これはすべて同じなので2行目で 10(番)になるようにしてある」「2番目の値が周波数、 数字が大きいほど高い音」「3番目の値は音の長さ、 これもサンプルでは同じ値にしてある」など適宜かみ 砕きながら説明します。

// 音の長さを 300 ミリ秒に設定します。
#define DURATION 300
// スピーカーのピンをデジタル 10 番とします。
#define SPEAKER_PIN 10
// プログラムには関数という命令のまとまりがあり
ます。中カッコで区切られています。

// setup()という関数は最初に実行されます。しか
し今回は何も書きません。
void setup() {
// 中身はカラです。

//loop()という関数は無限に繰り返されます。 void loop() {

// ドの周波数を 300 ミリ秒鳴らします。 delay
という命令で次の命令まで待ちます。

tone(SPEAKER_PIN, 262, DURATION);
delay(DURATION);

// V

}

tone(SPEAKER_PIN, 294, DURATION);
delay(DURATION);

// Ξ

tone(SPEAKER_PIN, 330, DURATION);
delay(DURATION);

// ファ

tone(SPEAKER_PIN, 349, DURATION);
delay(DURATION);

// ソ

tone(SPEAKER_PIN, 392,DURATION);
delay(DURATION);

// ラ

tone(SPEAKER_PIN, 440, DURATION);
delay(DURATION);

11シ

tone(SPEAKER_PIN, 494, DURATION);
delay(DURATION);

// ド

}

tone(SPEAKER PIN, 523, DURATION);

// 3 秒待つ

delay(3000);

可変抵抗器によるアナログ入力

2番目のスケッチはアナログ入力を学びます。入力 によって音階が変化することを理解し、手元の可変抵 抗器がプログラムに影響していることを感じてもら います。「可変抵抗器」という名称は親しみがないか もしれませんので、「ボリュームのつまみ」など適宜 言い方を変えてみてください。(つまみ、も死語かも しれませんが…)

可変抵抗器

- ●ファイル→スケッチブックからスケッチを開かせ ます。
- ▶3つの定数の宣言文を解説します。ここまではスピ ーカーのサンプルと同じです。
- ▶変数宣言が出てきました。ここで定数はその名の通 り値が変わらないもの、変数はプログラム中で変化 する入れ物、ということを説明します。また、int

については整数 (integer) であることも説明してお きます。

- ▶ setup は今回も何もないので飛ばします。もとより カットしておくのも一案です。
- ▶ analogRead()というメソッド(命令)で指定された ポートの電圧を測ることを教えます。
- ▶ 圧電スピーカーの周波数として値が与えられ、出力 されることを説明します。
- ●Arduino からスピーカーの片方のプラグを抜き、音 が鳴らないようにしてから Ctrl+U でスケッチのコ ンパイルとアップロードを実施します。
- ●USB ケーブルを抜いた後に Arduino のボードに可 変抵抗器を接続させます。赤いケーブルを 5V に、 黒いケーブルを GND に、黄色いケーブルをアナロ グの0番に接続します。スピーカーも再度接続しま す。
- ●可変抵抗器の黄色いケーブルの電圧は、つまみを捻ると 0V から 5V に変わること、アナログ入力端子では、0V から 5V までの間の電圧値が 0 から 1023になることを説明しておきます。可変抵抗器の各端子の意味と仕組み、電圧が変わる原理なども時間に

応じて説明すると良いでしょう。

- ●USB ケーブルを電源もしくは PC につなぎます。
- サンプルが動いたら、プログラムを自分で変えさせます。例えば sensorValue の値を sensorValue*2 にしたり 1023-sensorValue にしたりさせてその変化を予想させ、実験します。変数に代入するタイミングで変えても tone を呼び出すタイミングで変えても tone を呼び出すタイミングで変えても tone を呼び出すタイミングで変えて も同じということを示すことで、「プログラムの正解はひとつではない」ことを理解してもらうと良いでしょう。
- ●analogRead()の解説は以下のページにあります。 <u>http://www.musashinodenpa.com/arduino/ref/inde</u> x.php?f=0&pos=2113

//音の長さを定義します。
#define DURATION 50
// スピーカーのピンをデジタル 10 番とします。
#define SPEAKER_PIN 10
// 可変抵抗から取得するピンをアナログ 0 番としま
す。

#define RESISTOR_PIN A0 // **可変抵抗器からの値を入れる変数** sensorValue **を宣言して初期化します**。

```
int sensorValue = 0;
```

void setup() {

// 今回も何も書きません。

}

}

void loop() {

//analogRead <mark>命令でアナログ</mark>0 番から値を読込 んで、sensorValue に代入します。

sensorValue = analogRead(RESISTOR_PIN);

//sensorValue の周波数の音を 50 ミリ秒鳴らし ます。

tone(SPEAKER_PIN, sensorValue,
DURATION) ; delay(DURATION);

サーボモーターでループを学ぶ

3番目のスケッチはサーボモ ーターを使います。サンプルス ケッチの確認、スケッチのアッ プロード、サーボモーターの接 続、実行、の順に進めます。(サ ーボモーターが接続されてい

- ると USB の電流が吸われてう
- まく書き込めない場合があります)
- ●ファイル→スケッチブックからスケッチを開かせ ます。
- ●ヘッダファイルのインクルードについては「おまじない」という言い方は避け、「サーボへの命令を記述するために必要なコード」と伝えます。
- ●for ループについての書式を学びます。「for()の中にはセミコロンで区切られて3つの領域があり、最初の領域で変化する変数の初期値(最初の値)を、2番目の領域で終わる条件を、3番目の領域で変化の仕方を指定する」「中カッコで囲まれた部分が指定回数だけ回る、そして変数の中身も変化する」とい

うことを説明します。ここでは pos が 0 から 180 ま で変化することを理解してもらいます。難しい様子 でしたら、すべて理解させなくて構いません。どこ を変えたら角度が変わるか、を教えて自由課題では そこを編集させてください。

- ●Ctrl+U でコンパイル、アップロードを実施します。 ●サーボの電源と PWM 端子を接続します。
- ●自分たちで角度の指定を変えさせたり、ステップ (=速度)を変えさせたりして動きの変化を楽しん でもらいます。

// サーボを使うためのヘッダファイル(宣言ファイ ル)を読み込みます。 #include <Servo.h> // サーボオブジェクトを作ります。 Servo myservo; // サーボモーターの角度を記憶しておく変数posを 宣言してゼロで初期化 int pos = 0; void setup() { // 0番ピンをサーボモーターと関連づけます。 myservo.attach(0);

void loop() {

}

}

//指定回数まわす for ループです。pos の中身は
 0 から 180 まで 1 ずつ増えます。

for(pos = 0; pos <= 180; pos += 1){

// サーボを pos の角度に変更して 10 ミリ秒待 ちます。

myservo.write(pos); delay(10);

// 1 秒待ちます。

delay(1000);

// 次にまた for ループで pos の値を 180 から 0 まで減らします。

for(pos = 180; pos >= 0; pos -= 1){
 myservo.write(pos); delay(10);
}
// 1秒待ちます。

delay(1000);

}

可変抵抗器のアナログ入力とサーボモーターを組 み合わせてみる

可変抵抗器からの入力の仕方とサーボモーターへ の出力の仕方が分かったので、それらを組み合わせて 「可変抵抗器をねじるとサーボが動く」というサンプ ルを動かしてみます。

- ●ファイル→スケッチブックからスケッチを開かせ ます。
- 先ほど学んだ2つのプログラムが組み合わさっていることを理解させます。どのコードがどちらのものであったかなどを答えさせても良いでしょう。
- ●サンプルが動いたら、可変抵抗器の向きと逆向きに 動かすには、角度を 90 度までにするには、といっ た課題を出してみます。
- ●時間を持て余している生徒さん、すでにプログラミング経験が豊富な生徒さんには、個別に条件分岐書式などを教えて一定値を超えたらサーボモーターが振り切れるものを作れ、などの課題を与えても良いでしょう。

// サーボを使うためのヘッダファイル(宣言ファイル)を読み込みます。

#include <Servo.h>

// 可変抵抗から取得するピンをアナログ 0 番とします。

#define RESISTOR PIN A0

// サーボオブジェクトを作ります。

Servo myservo;

// 可変抵抗器からの値を入れる変数 sensorValue
を宣言して初期化します。

int sensorValue = 0;

void setup() {

}

// 0番ピンをサーボモーターと関連づけます。
myservo.attach(0);

void loop() {

// analogRead 命令でアナログ 0 番から値を読込 んで、sensorValue に代入します。

sensorValue = analogRead(RESISTOR_PIN);
// 0-1023を0-180に変換します。

sensorValue = map(sensorValue, 0, 1023,
0, 180);

// サーボを pos の角度まで動かして 10 ミリ秒待 ちます。

myservo.write(sensorValue); delay(10); }

分岐の例

```
void loop() {
  sensorValue = analogRead(RESISTOR_PIN);
  if(sensorValue > 500){
    myservo.write(100);
    delay(10);
  }else{
    myservo.write(0);
    delay(10);
  }
}
```

センサーを使う

最後に超音波距離センサーを使ってみます。まずセ ンサー自体の説明をしてからサンプルを動かします。

 センサーには電源のプラスとマ イナス(5V と GND)、TRIG とECHOという4つの端子があ ります。TRIG(トリガー)は、 Arduinoからセンサーへの信号 線です。この端子にタイミング の指示があったら、超音波を発 信します。ECHO(エコー)は

超音波による 距離センサー

センサーから Arduino への信号線です。超音波発信 から受信までどれくらいの時間が経ったかを、パル スの長さで戻してくれます。

- ●プログラムにある pulseIn というメソッドは ECHO の信号をマイクロ秒で答えてくれます。
- ●ファイル→スケッチブックからスケッチを開かせ ます。
- ▶宣言部分の定数を確認します。同時にボードのバナ ナジャックの対応位置なども説明すると良いでし

よう。

- ➤ double というのは整数ではなく小数を表す、という 程度の説明をします。
- ▶デジタルポートの入力・出力の方向を setup で定め ます。同時にシリアルポートの速度もここで指定し ていることに留意させてください。
- ▶パルスを送り、ECHOから戻ってくる値で距離を計算します。
- >センチメートル単位にして、それをもとに音階を出すことを説明します。
- ▶同時にシリアルポートを通してパソコンと Arduino が通信することを説明します。ただしこのコードは 弱視者・晴眼者の確認用なので、シリアルモニタは うまく読み上げません。
- ・弱視の生徒の場合は動いている様子を、「シリアル モニタ」で確認することもできます。シリアルモニ タは Ctrl+Shift+M で起動します。ボーレートに注 意してください。9600 に設定します。
- ●生徒の興味と体力があれば、0.017 という係数について少し詳しく説明します。
 - (http://marupeke296.com/EL_Ard_No8_SuperSoni

c.html に詳しく書いてあります)時間と速さと距離 の関係から、距離=時間×速さです。ここで時間と は、pulseIn で得られるマイクロ秒単位の時間です。 速さとは、音速の 340m/s です。cm 単位にすると 34,000cm/s です。そしてマイクロ秒を秒に直すには 1,000,000 で割ればよいので、プログラムの interval という変数を用いると、

interval ÷ 1,000,000 × 34,000 = interval × 0.034 になります。これが往復の距離になるので、 その半分、すなわち interval × 0.017 が片道の距 離ということになります。

// 音の長さ、スピーカーピン、トリガーピン、エコ ーピンのナンバーを宣言します。 #define DURATION 100 #define BEEP_PIN 10 #define TRIG_PIN 2 #define ECHO_PIN 8 // interval と distance を宣言します。 int interval = 0; double distance = 0; void setup() {

// 入出力の方向を決めてシリアルポートを開きま す。

// 2番が出力、8番が入力です。

pinMode(2, OUTPUT);

pinMode(8, INPUT);

// Serial.begin(9600);//PC と通信する場 合シリアルポートを開きます。

void loop() {

}

// 10 マイクロ秒以上のパルスを送ります。HIGH, LOW を順番に指示します。

digitalWrite(TRIG PIN, HIGH);

delayMicroseconds(100);

digitalWrite (TRIG PIN, LOW);

// pulseIn()で ECHO ピンの HIGH である状態が どれくらい長いのか検出します。

interval = pulseIn(ECHO PIN, HIGH); // interval の値からセンチメートルに変換しま す。

distance = interval * 0.017;

// 音階で出力します。

tone(BEEP_PIN, interval/10, DURATION); delay(DURATION);

// PC で状態を得る場合シリアル通信をします
(Ctrl + Shift + M)

//Serial.print(interval, DEC);

//Serial.print("¥t");

//Serial.print(distance, 4);

//Serial.print("¥n");

注意すべき点

}

 直接ボードに触れて学習するので、冬の場合は特に 生徒の静電気を逃がしておきます。服装なども注意 して、場合によっては薄い手袋などを用意しておく と良いでしょう。部屋の気温が寒いと毛糸の上着な どを脱いでもらうのが申し訳ないので、事前に部屋 を暖めておくようにします。

到達目標

● コンピュータを使ったシステムの基本、入力→演算

→出力という一連の流れを理解する。

- ●アナログ量を数値化してプログラムに利用していることを理解する。
- ●世の中にある様々なセンサーについて興味を持つ。

生徒用資料

生徒用には、サンプルプログラムをあらかじめコン ピュータに入れておきます。そのほか実際に触る Arduino は自分で組めるように大型化したものを準備 します。